介绍基于皮肤检测之后的,寻找最大连通区域,完成脸谱检测的算法。大致的算法步骤如下:
原图如下:
每步处理以后的效果:
程序运行,加载选择图像以后的截屏如下:
截屏中显示图片,是适当放缩以后,代码如下:
- Image scaledImage = rawImg.getScaledInstance(200, 200, Image.SCALE_FAST);
- g2.drawImage(scaledImage, 0, 0, 200, 200, null);
第一步:图像预处理,预处理的目的是为了减少图像中干扰像素,使得皮肤检测步骤可以得
到更好的效果,最常见的手段是调节对比度与亮度,也可以高斯模糊。
这里调节对比度的算法很简单,源代码如下:
- package com.gloomyfish.face.detection;
-
- import java.awt.image.BufferedImage;
-
- public class ContrastFilter extends AbstractBufferedImageOp {
-
- private double nContrast = 30;
-
- public ContrastFilter() {
- System.out.println("Contrast Filter");
- }
-
- @Override
- public BufferedImage filter(BufferedImage src, BufferedImage dest) {
- int width = src.getWidth();
- int height = src.getHeight();
- double contrast = (100.0 + nContrast) / 100.0;
- contrast *= contrast;
- if ( dest == null )
- dest = createCompatibleDestImage( src, null );
-
- int[] inPixels = new int[width*height];
- int[] outPixels = new int[width*height];
- getRGB( src, 0, 0, width, height, inPixels );
- int index = 0;
- int ta = 0, tr = 0, tg = 0, tb = 0;
- for(int row=0; row<height; row++) {
- for(int col=0; col<width; col++) {
- index = row * width + col;
- ta = (inPixels[index] >> 24) & 0xff;
- tr = (inPixels[index] >> 16) & 0xff;
- tg = (inPixels[index] >> 8) & 0xff;
- tb = inPixels[index] & 0xff;
-
-
- tr = adjustContrast(tr, contrast);
- tg = adjustContrast(tg, contrast);
- tb = adjustContrast(tb, contrast);
-
-
- outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
- }
- }
- setRGB( dest, 0, 0, width, height, outPixels );
- return dest;
- }
-
- public int adjustContrast(int color, double contrast) {
- double result = 0;
- result = color / 255.0;
- result -= 0.5;
- result *= contrast;
- result += 0.5;
- result *=255.0;
- return clamp((int)result);
- }
-
- public static int clamp(int c) {
- if (c < 0)
- return 0;
- if (c > 255)
- return 255;
- return c;
- }
-
- }
注意:第一步不是必须的,如果图像质量已经很好,可以直接跳过。
第二步:皮肤检测,采用的是基于RGB色彩空间的统计结果来判断一个像素是否为skin像
素,如果是皮肤像素,则设置像素为黑色,否则为白色。给出基于RGB色彩空间的五种皮
肤检测统计方法,最喜欢的一种源代码如下:
- package com.gloomyfish.face.detection;
-
- import java.awt.image.BufferedImage;
-
-
-
-
-
-
-
-
-
-
- public class SkinFilter4 extends AbstractBufferedImageOp {
-
- @Override
- public BufferedImage filter(BufferedImage src, BufferedImage dest) {
- int width = src.getWidth();
- int height = src.getHeight();
-
- if ( dest == null )
- dest = createCompatibleDestImage( src, null );
-
- int[] inPixels = new int[width*height];
- int[] outPixels = new int[width*height];
- getRGB( src, 0, 0, width, height, inPixels );
- int index = 0;
- for(int row=0; row<height; row++) {
- int ta = 0, tr = 0, tg = 0, tb = 0;
- for(int col=0; col<width; col++) {
- index = row * width + col;
- ta = (inPixels[index] >> 24) & 0xff;
- tr = (inPixels[index] >> 16) & 0xff;
- tg = (inPixels[index] >> 8) & 0xff;
- tb = inPixels[index] & 0xff;
-
-
- double sum = tr + tg + tb;
- if (((double)tb/(double)tg<1.249) &&
- ((double)sum/(double)(3*tr)>0.696) &&
- (0.3333-(double)tb/(double)sum>0.014) &&
- ((double)tg/(double)(3*sum)<0.108))
- {
- tr = tg = tb = 0;
- } else {
- tr = tg = tb = 255;
- }
- outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
- }
- }
- setRGB(dest, 0, 0, width, height, outPixels);
- return dest;
- }
- }
第三步:寻找最大连通区域 使用连通组件标记算法,寻找最大连通区域,关于什么是连通组件标记算法,可以参见这里
,里面提到的连通组件算法效率不高,所
以这里我完成了一个更具效率的版本,主要思想是对像素数据进行八邻域寻找连通,然后合
并标记。源代码如下:
- package com.gloomyfish.face.detection;
-
- import java.util.Arrays;
- import java.util.HashMap;
-
-
-
-
-
-
-
-
- public class FastConnectedComponentLabelAlg {
- private int bgColor;
- private int[] labels;
- private int[] outData;
- private int dw;
- private int dh;
-
- public FastConnectedComponentLabelAlg() {
- bgColor = 255;
- }
-
- public int[] doLabel(int[] inPixels, int width, int height) {
- dw = width;
- dh = height;
- int nextlabel = 1;
- int result = 0;
- labels = new int[dw * dh/2];
- outData = new int[dw * dh];
- for(int i=0; i<labels.length; i++) {
- labels[i] = i;
- }
-
-
- int[] fourNeighborhoodPixels = new int[8];
- int[] fourNeighborhoodLabels = new int[8];
- int[] knownLabels = new int[4];
-
- int srcrgb = 0, index = 0;
- boolean existedLabel = false;
- for(int row = 0; row < height; row ++) {
- for(int col = 0; col < width; col++) {
- index = row * width + col;
- srcrgb = inPixels[index] & 0x000000ff;
- if(srcrgb == bgColor) {
- result = 0;
- } else {
-
- fourNeighborhoodPixels[0] = getPixel(inPixels, row-1, col);
- fourNeighborhoodPixels[1] = getPixel(inPixels, row, col-1);
- fourNeighborhoodPixels[2] = getPixel(inPixels, row+1, col);
- fourNeighborhoodPixels[3] = getPixel(inPixels, row, col+1);
-
-
- fourNeighborhoodPixels[4] = getPixel(inPixels, row-1, col-1);
- fourNeighborhoodPixels[5] = getPixel(inPixels, row-1, col+1);
- fourNeighborhoodPixels[6] = getPixel(inPixels, row+1, col-1);
- fourNeighborhoodPixels[7] = getPixel(inPixels, row+1, col+1);
-
-
- fourNeighborhoodLabels[0] = getLabel(outData, row-1, col);
- fourNeighborhoodLabels[1] = getLabel(outData, row, col-1);
- fourNeighborhoodLabels[2] = getLabel(outData, row+1, col);
- fourNeighborhoodLabels[3] = getLabel(outData, row, col+1);
-
-
- fourNeighborhoodLabels[4] = getLabel(outData, row-1, col-1);
- fourNeighborhoodLabels[5] = getLabel(outData, row-1, col+1);
- fourNeighborhoodLabels[6] = getLabel(outData, row+1, col-1);
- fourNeighborhoodLabels[7] = getLabel(outData, row+1, col+1);
-
- knownLabels[0] = fourNeighborhoodLabels[0];
- knownLabels[1] = fourNeighborhoodLabels[1];
- knownLabels[2] = fourNeighborhoodLabels[4];
- knownLabels[3] = fourNeighborhoodLabels[5];
-
- existedLabel = false;
- for(int k=0; k<fourNeighborhoodLabels.length; k++) {
- if(fourNeighborhoodLabels[k] != 0) {
- existedLabel = true;
- break;
- }
- }
-
- if(!existedLabel) {
- result = nextlabel;
- nextlabel++;
- } else {
- int found = -1, count = 0;
- for(int i=0; i<fourNeighborhoodPixels.length; i++) {
- if(fourNeighborhoodPixels[i] != bgColor) {
- found = i;
- count++;
- }
- }
-
- if(count == 1) {
- result = (fourNeighborhoodLabels[found] == 0) ? nextlabel : fourNeighborhoodLabels[found];
- } else {
- result = (fourNeighborhoodLabels[found] == 0) ? nextlabel : fourNeighborhoodLabels[found];
- for(int j=0; j<knownLabels.length; j++) {
- if(knownLabels[j] != 0 && knownLabels[j] != result &&
- knownLabels[j] < result) {
- result = knownLabels[j];
- }
- }
-
- boolean needMerge = false;
- for(int mm = 0; mm < knownLabels.length; mm++ ) {
- if(knownLabels[0] != knownLabels[mm] && knownLabels[mm] != 0) {
- needMerge = true;
- }
- }
-
-
- if(needMerge) {
- int minLabel = knownLabels[0];
- for(int m=0; m<knownLabels.length; m++) {
- if(minLabel > knownLabels[m] && knownLabels[m] != 0) {
- minLabel = knownLabels[m];
- }
- }
-
-
- result = (minLabel == 0) ? result : minLabel;
-
-
- if(knownLabels[0] != 0) {
- setData(outData, row-1, col, result);
- }
- if(knownLabels[1] != 0) {
- setData(outData, row, col-1, result);
- }
- if(knownLabels[2] != 0) {
- setData(outData, row-1, col-1, result);
- }
- if(knownLabels[3] != 0) {
- setData(outData, row-1, col+1, result);
- }
-
- }
- }
- }
- }
- outData[index] = result;
- }
- }
-
-
- for(int row = 0; row < height; row ++) {
- for(int col = 0; col < width; col++) {
- index = row * width + col;
- mergeLabels(index);
- }
- }
-
-
- HashMap<Integer, Integer> labelMap = new HashMap<Integer, Integer>();
- for(int d=0; d<outData.length; d++) {
- if(outData[d] != 0) {
- if(labelMap.containsKey(outData[d])) {
- Integer count = labelMap.get(outData[d]);
- count+=1;
- labelMap.put(outData[d], count);
- } else {
- labelMap.put(outData[d], 1);
- }
- }
- }
-
-
- Integer[] keys = labelMap.keySet().toArray(new Integer[0]);
- Arrays.sort(keys);
- int maxKey = 1;
- int max = 0;
- for(Integer key : keys) {
- if(max < labelMap.get(key)){
- max = labelMap.get(key);
- maxKey = key;
- }
- System.out.println( "Number of " + key + " = " + labelMap.get(key));
- }
- System.out.println("maxkey = " + maxKey);
- System.out.println("max connected component number = " + max);
- return outData;
- }
-
- private void mergeLabels(int index) {
- int row = index / dw;
- int col = index % dw;
-
-
- int min = getLabel(outData, row, col);
- if(min == 0) return;
- if(min > getLabel(outData, row-1, col) && getLabel(outData, row-1, col) != 0) {
- min = getLabel(outData, row-1, col);
- }
-
- if(min > getLabel(outData, row, col-1) && getLabel(outData, row, col-1) != 0) {
- min = getLabel(outData, row, col-1);
- }
-
- if(min > getLabel(outData, row+1, col) && getLabel(outData, row+1, col) != 0) {
- min = getLabel(outData, row+1, col);
- }
-
- if(min > getLabel(outData, row, col+1) && getLabel(outData, row, col+1) != 0) {
- min = getLabel(outData, row, col+1);
- }
-
- if(min > getLabel(outData, row-1, col-1) && getLabel(outData, row-1, col-1) != 0) {
- min = getLabel(outData, row-1, col-1);
- }
-
- if(min > getLabel(outData, row-1, col+1) && getLabel(outData, row-1, col+1) != 0) {
- min = getLabel(outData, row-1, col+1);
- }
-
- if(min > getLabel(outData, row+1, col-1) && getLabel(outData, row+1, col-1) != 0) {
- min = getLabel(outData, row+1, col-1);
- }
-
- if(min > getLabel(outData, row+1, col+1) && getLabel(outData, row+1, col+1) != 0) {
- min = getLabel(outData, row+1, col+1);
- }
-
- if(getLabel(outData, row, col) == min)
- return;
- outData[index] = min;
-
-
- if((row -1) >= 0) {
-
- mergeLabels((row-1)*dw + col);
- }
-
- if((col-1) >= 0) {
- mergeLabels(row*dw+col-1);
- }
-
- if((row+1) < dh) {
- mergeLabels((row + 1)*dw+col);
- }
-
- if((col+1) < dw) {
- mergeLabels((row)*dw+col+1);
- }
-
- if((row-1)>= 0 && (col-1) >=0) {
- mergeLabels((row-1)*dw+col-1);
- }
-
- if((row-1)>= 0 && (col+1) < dw) {
- mergeLabels((row-1)*dw+col+1);
- }
-
- if((row+1) < dh && (col-1) >=0) {
- mergeLabels((row+1)*dw+col-1);
- }
-
- if((row+1) < dh && (col+1) < dw) {
- mergeLabels((row+1)*dw+col+1);
- }
- }
-
- private void setData(int[] data, int row, int col, int value) {
- if(row < 0 || row >= dh) {
- return;
- }
-
- if(col < 0 || col >= dw) {
- return;
- }
-
- int index = row * dw + col;
- data[index] = value;
- }
-
- private int getLabel(int[] data, int row, int col) {
-
- if(row < 0 || row >= dh) {
- return 0;
- }
-
- if(col < 0 || col >= dw) {
- return 0;
- }
-
- int index = row * dw + col;
- return (data[index] & 0x000000ff);
- }
-
- private int getPixel(int[] data, int row, int col) {
-
- if(row < 0 || row >= dh) {
- return bgColor;
- }
-
- if(col < 0 || col >= dw) {
- return bgColor;
- }
-
- int index = row * dw + col;
- return (data[index] & 0x000000ff);
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
- public static int[] imageData = new int[]{
- 255, 0, 0, 255, 0, 255, 255, 0, 255, 255, 255,
- 255, 0, 0, 255, 0, 255, 255, 0, 0, 255, 0,
- 255, 0, 0, 0, 255, 255, 255, 255, 255, 0, 0,
- 255, 255, 0, 255, 255, 255, 0, 255, 0, 0, 255,
- 255, 255, 0, 0, 0, 0, 255, 0, 0, 0, 0
- };
-
- public static void main(String[] args) {
- FastConnectedComponentLabelAlg ccl = new FastConnectedComponentLabelAlg();
- int[] outData = ccl.doLabel(imageData, 11, 5);
- for(int i=0; i<5; i++) {
- System.out.println("--------------------");
- for(int j = 0; j<11; j++) {
- int index = i * 11 + j;
- if(j != 0) {
- System.out.print(",");
- }
- System.out.print(outData[index]);
- }
- System.out.println();
- }
- }
-
- }
找到最大连通区域以后,对最大连通区域数据进行扫描,找出最小点,即矩形区域左上角坐
标,找出最大点,即矩形区域右下角坐标。知道这四个点坐标以后,在原图上打上红色矩形
框,标记出脸谱位置。寻找四个点坐标的实现代码如下:
- private void getFaceRectangel() {
- int width = resultImage.getWidth();
- int height = resultImage.getHeight();
- int[] inPixels = new int[width*height];
- getRGB(resultImage, 0, 0, width, height, inPixels);
-
- int index = 0;
- int ta = 0, tr = 0, tg = 0, tb = 0;
- for(int row=0; row<height; row++) {
- for(int col=0; col<width; col++) {
- index = row * width + col;
- ta = (inPixels[index] >> 24) & 0xff;
- tr = (inPixels[index] >> 16) & 0xff;
- tg = (inPixels[index] >> 8) & 0xff;
- tb = inPixels[index] & 0xff;
- if(tr == tg && tg == tb && tb == 0) {
- if(minY > row) {
- minY = row;
- }
-
- if(minX > col) {
- minX = col;
- }
-
- if(maxY < row) {
- maxY = row;
- }
-
- if(maxX < col) {
- maxX = col;
- }
- }
- }
- }
- }
缺点: 此算法不支持多脸谱检测,不支持裸体中的脸谱检测,但是根据人脸的
生物学特征可以进一步细化分析,支持裸体人脸检测